The Standard
Some rules to follow
WORK IN PROGRESS
This is an opinionated standard.
1. Test
Scalar, vectors, matrices and random variables:
\begin{array}{l|ll} \hline \mathbf{Symbol} & \mathbf{Meaning} & \mathbf{Style} \\ \hline a, b, c, \alpha, \beta, \gamma & \text{Scalar} & \text{roman or greek, lowercase, italic} \\ \vb{x}, \vb{y}, \vb{z}, \boldsymbol{\alpha}, \boldsymbol{\beta}, \boldsymbol{\gamma} & \text{Vector} & \text{roman or greek, lowercase, bold + upright if roman} \\ \vb{A}, \vb{B}, \vb{C}, \vb{\Gamma}, \vb{\Sigma}, \vb{\Phi} & \text{Matrix} & \text{roman or greek, uppercase, bold, upright} \\ X, Y, Z & \text{Random variable} & \text{roman, uppercase, italic} \\ \rb{X}, \rb{Y}, \rb{Z} & \text{Random vector} & \text{roman, uppercase, bold, italic} \\ \hline \end{array}
General sets and special sets:
General and special functions, general and special operators:
\begin{array}{l|ll} \hline \mathbf{Symbol} & \mathbf{Meaning} & \mathbf{Style} \\ \hline f\of{\cdot}, \mu\of{\cdot} & \text{Function} & \text{roman or greek, round brackets} \\ F\Of{\cdot}, \Delta\Of{\cdot} & \text{Operator} & \text{roman or greek, square brackets} \\ \hline \end{array}
TODO
to support reading flow - avoid display math wherever possible - avoid using parentheses in text (not math-mode) wherever possible, wrap text in commas instead - avoid itemize and enumitem, use them only if their use strictly increases and improves reading flow - only a tot number (how many?) of envs per subsection, not too many or else reading flow will suffer - plural in definition and proposition names (e.g. Counting measures) and singular in examples (e.g. Counting measure) - if they exist, official lemma and proposition names should be used (e.g. Weierstrass)
- the idea is not to introduce yet another tool for interactive content, for that jupyter notebooks and such exist, but rather to have a uniform way of dealing with publications on the web - therefore COMMANDS THAT ARE NOT REPLICABLE THROUGH TEX ARE NOT ALLOWED IN MARKTEX - Use capitalization for propositions and theorems, e.g. Novikov's Condition, Itô's Lemma, Girsanov's Theorem - superscript only if in parentheses e.g. - if a block has only math no need for dot at the end
A statement is either true or false but not both. Let and be two statements. We write “” if implies . We write “”, “ if and only if ” or “ iff ” if and . Further, the symbol “” denotes such that, means for all and means there exists.