Statistical Modelling

Generated on December 2, 2024

Samuel Anzalone[∗] MSc Statistics, ETH Zürich

December 2, 2024

[∗]ansamuel@ethz.ch

Contents

1. Linear Algebra and Calculus

We refresh some of the material in linear algebra and calculus needed for this course.

1.1 Linear Algebra Refresher

Recap 1.1 (Vector toolbox). Let $a, b \in \mathbb{R}^n$ be two vectors, then we recall the following definitions and properties:

- \bullet inner product: $\langle \mathbf{a}, \mathbf{b} \rangle = \mathbf{a}^{\top} \mathbf{b} = \mathbf{b}^{\top} \mathbf{a} = \sum_{i=1}^n a_i b_i$
- \bullet lenght: $\|\mathbf{a}\|^2 = \langle \mathbf{a}, \mathbf{a} \rangle = \sum_{i=1}^n a_i^2$
- Cauchy-Schwarz: $|\langle \mathbf{a}, \mathbf{b} \rangle|^2 \le \langle \mathbf{a}, \mathbf{a} \rangle \cdot \langle \mathbf{b}, \mathbf{b} \rangle$
- orthogonality: $\mathbf{a} \perp \mathbf{b} \iff \langle \mathbf{a}, \mathbf{b} \rangle = 0$

Recap 1.2 (Orthonormal basis). Let $\mathbf{y} = \sum_i b_i \mathbf{e}_i$ where the \mathbf{e}_i form an orthonormal basis, i.e. $\langle {\bf e}_i,{\bf e}_j\rangle=\delta_{i,j}.$ Then the coordinates can be calculated as $b_i=\langle {\bf y},{\bf e}_i\rangle.$

Recap 1.3 (Matrix transpose and inverse). Let $\mathbf{A} \in \mathbb{R}^{n \times p}$ and $\mathbf{B} \in \mathbb{R}^{p \times n}$ be two invertible matrices, then the following properties hold:

- 1. $(\mathbf{A}\mathbf{B})^{\top} = \mathbf{B}^{\top}\mathbf{A}^{\top}$
- 2. $A^{-1}A = I$
- 3. $(AB)^{-1} = B^{-1}A^{-1}$

4.
$$
(A^{-1})^{\top} = (A^{\top})^{-1} = A^{-\top}
$$

A matrix **A** is called symmetric if $A = A^{\top}$.

Note that if ${\bf X}$ is a matrix, then ${\bf X}^\top{\bf X}$ and $\left({\bf X}^\top{\bf X}\right)^{-1}$ (if it exists) are symmetric.

Recap 1.4 (Orthogonal projection). Let $y \in \mathbb{R}^n$ be a vector and S be a p-dimensional subspace spanned by linearly independent vectors ${\bf x}_1,\ldots{\bf x}_p$. If we define ${\bf X}=[{\bf x}_1\cdots{\bf x}_p]\in$ $\R^{n\times p}$, then the orthogonal projection matrix is $\mathbf{P}_S=\mathbf{X}\big(\mathbf{X}^\top\mathbf{X}\big)^{-1}\mathbf{X}^\top\in\R^{n\times n}.$

The orthogonal projection of y onto S in the basis of \mathbb{R}^n is $\mathbf{y}_\perp = \mathbf{P}_S \mathbf{y}$ and we note the following properties:

- 1. \mathbf{P}_S is symmetric, i.e $\mathbf{P}_S^{\top} = \mathbf{P}_S$
- 2. \mathbf{P}_S is idempotent, i.e $\mathbf{P}_S^n = \mathbf{P}$

3 of [4](#page-3-1)

- 3. tr $\mathbf{P}_S = p$
- 4. rank $P_S = p$
- 5. $\mathbf{y}_{\perp} = \argmin_{\mathbf{s} \in S}$ $||y - s||$
- 6. $1 P_S$ is also a projection

We also note that $P_S(1 - P_S) = 0$ and that the eigenvalues of P_S are in $\{0, 1\}$ with the geometric multiplicity of the eigenvalue 1 being p .

Recap 1.5 (Quadratic form, positive definite matrix). Let $A \in \mathbb{R}^{n \times n}$ be a matrix.

- $\bullet \;\; {\bf A} \;$ is called positive definite or p.d. if $\forall {\bf x} \in \mathbb{R}^n \setminus \{ {\bf 0} \} : {\bf x}^\top {\bf A} {\bf x} > 0$
- \bullet ${\bf A}$ is called positive semi-definite or p.s.d. if $\forall {\bf x}\in \mathbb{R}^n: {\bf x}^\top{\bf A}{\bf x}\geq 0$

Let λ_i denote the eigenvalues of A. We note the following properties:

• if **A** is p.d., then $\lambda_i > 0$, tr **A** > 0 , det{**A**} > 0

1.2 Multidimensional Calculus Refresher

Test