Statistical Modelling

Generated on December 2, 2024

Samuel Anzalone* MSc Statistics, ETH Zürich

December 2, 2024

*ansamuel@ethz.ch

Contents

1.	Line	ar Algebra and Calculus											3
	1.1	Linear Algebra Refresher									 		3
	1.2	Multidimensional Calculus Refresher		 									4

1. Linear Algebra and Calculus

We refresh some of the material in linear algebra and calculus needed for this course.

1.1 Linear Algebra Refresher

Recap 1.1 (Vector toolbox). Let $\mathbf{a}, \mathbf{b} \in \mathbb{R}^n$ be two vectors, then we recall the following definitions and properties:

- inner product: $\langle \mathbf{a}, \mathbf{b} \rangle = \mathbf{a}^\top \mathbf{b} = \mathbf{b}^\top \mathbf{a} = \sum_{i=1}^n a_i b_i$
- lenght: $\|\mathbf{a}\|^2 = \langle \mathbf{a}, \mathbf{a} \rangle = \sum_{i=1}^n a_i^2$
- Cauchy-Schwarz: $|\langle \mathbf{a}, \mathbf{b} \rangle|^2 \leq \langle \mathbf{a}, \mathbf{a} \rangle \cdot \langle \mathbf{b}, \mathbf{b} \rangle$
- orthogonality: $\mathbf{a} \perp \mathbf{b} \iff \langle \mathbf{a}, \mathbf{b} \rangle = 0$

Recap 1.2 (Orthonormal basis). Let $\mathbf{y} = \sum_i b_i \mathbf{e}_i$ where the \mathbf{e}_i form an orthonormal basis, i.e. $\langle \mathbf{e}_i, \mathbf{e}_j \rangle = \delta_{i,j}$. Then the coordinates can be calculated as $b_i = \langle \mathbf{y}, \mathbf{e}_i \rangle$.

Recap 1.3 (Matrix transpose and inverse). Let $\mathbf{A} \in \mathbb{R}^{n \times p}$ and $\mathbf{B} \in \mathbb{R}^{p \times n}$ be two invertible matrices, then the following properties hold:

- 1. $(\mathbf{A}\mathbf{B})^{\top} = \mathbf{B}^{\top}\mathbf{A}^{\top}$
- $2. \mathbf{A}^{-1}\mathbf{A} = \mathbf{I}$
- 3. $(\mathbf{AB})^{-1} = \mathbf{B}^{-1}\mathbf{A}^{-1}$

4.
$$(\mathbf{A}^{-1})^{\top} = (\mathbf{A}^{\top})^{-1} = \mathbf{A}^{-\top}$$

A matrix **A** is called symmetric if $\mathbf{A} = \mathbf{A}^{\top}$.

Note that if X is a matrix, then $\mathbf{X}^{\top}\mathbf{X}$ and $(\mathbf{X}^{\top}\mathbf{X})^{-1}$ (if it exists) are symmetric.

Recap 1.4 (Orthogonal projection). Let $\mathbf{y} \in \mathbb{R}^n$ be a vector and S be a p-dimensional subspace spanned by linearly independent vectors $\mathbf{x}_1, \ldots \mathbf{x}_p$. If we define $\mathbf{X} = [\mathbf{x}_1 \cdots \mathbf{x}_p] \in \mathbb{R}^{n \times p}$, then the orthogonal projection matrix is $\mathbf{P}_S = \mathbf{X} (\mathbf{X}^\top \mathbf{X})^{-1} \mathbf{X}^\top \in \mathbb{R}^{n \times n}$.

The orthogonal projection of \mathbf{y} onto S in the basis of \mathbb{R}^n is $\mathbf{y}_{\perp} = \mathbf{P}_S \mathbf{y}$ and we note the following properties:

- 1. \mathbf{P}_S is symmetric, i.e $\mathbf{P}_S^{\top} = \mathbf{P}_S$
- 2. \mathbf{P}_S is idempotent, i.e $\mathbf{P}_S^n = \mathbf{P}$

3 of 4

- 3. tr $\mathbf{P}_S = p$
- 4. rank $\mathbf{P}_S = p$
- 5. $\mathbf{y}_{\perp} = \operatorname*{arg\,min}_{\mathbf{s}\in S} \|\mathbf{y} \mathbf{s}\|$
- 6. $1 \mathbf{P}_S$ is also a projection

We also note that $\mathbf{P}_S(\mathbf{1} - \mathbf{P}_S) = \mathbf{0}$ and that the eigenvalues of \mathbf{P}_S are in $\{0, 1\}$ with the geometric multiplicity of the eigenvalue 1 being p.

Recap 1.5 (Quadratic form, positive definite matrix). Let $\mathbf{A} \in \mathbb{R}^{n \times n}$ be a matrix.

- A is called positive definite or p.d. if $\forall \mathbf{x} \in \mathbb{R}^n \setminus {\mathbf{0}} : \mathbf{x}^\top \mathbf{A} \mathbf{x} > 0$
- A is called positive semi-definite or p.s.d. if $\forall \mathbf{x} \in \mathbb{R}^n : \mathbf{x}^\top \mathbf{A} \mathbf{x} \ge 0$

Let λ_i denote the eigenvalues of **A**. We note the following properties:

• if A is p.d., then $\lambda_i > 0$, tr $\mathbf{A} > 0$, det $\{\mathbf{A}\} > 0$

1.2 Multidimensional Calculus Refresher

Test