For consistency, we switch to the following notation for a derivative V:Vσ,r,…(t)(St,τ,K)
where σ,r,… are the option paramters, (t) further denotes the option type, and (St,τ,K) are the underlying asset price, time to maturity τ=T−t, and strike price, respectively. If it is clear from the context, we may omit K and some of these parameters.
6.1 Gaussian Shift Theorem
The Gaussian Shift Theorem allows the simplification of many calculations in the Black-Scholes model setting and circumvents the need of changing probability measures.
6.1.1 One-dimensional GST
Theorem 6.1 (Gaussian Shift Theorem): Let Z∼N(0,1),c∈R and f(Z) be a measurable function of Z with finite expectation. Then
E[ecZf(Z)]=e21c2E[f(Z+c)]
Proof: We have the identity
ecyϕ(y)=2π1e−2y2+cy=2π1e−2(y−c)2+21c2=e21c2ϕ(y−c)
hence
E[ecZf(Z)]=∫−∞∞ecyf(y)ϕ(y)dy=∫−∞∞e21c2f(y)ϕ(y−c)dy=e21c2∫−∞∞f(z+c)ϕ(z)dy=e21c2E[f(Z+c)].
6.1.2 Multivariate GST
We use the notation NCor(0,R) for when we use the correlation matrix R to define the multivariate Gaussian distribution.
Recap (Multivariate Gaussian): Let Z∼NCor(0,R) be a multivariate Gaussian random vector with mean 0∈Rn and correlation matrix R∈Rn×n, i.e. Cor[Zi,Zj]=Rij. The joint pdf of Z is
ϕR(z)=(2π)ndet(R)e−21z⊤R−1z
and the joint cdf is
ΦR(z)=∫−∞zϕR(t)dt
Theorem 6.2 (Multivariate Gaussian Shift Theorem): Let Z∼NCor(0,R),c∈Rn and f(Z) be a measurable function of Z with finite expectation. Then
E[ec⊤Zf(Z)]=e21c⊤RcE[f(Z+c)]
6.2 Simple Exotic Options
We will now consider and price some simple exotic options.
6.2.1 First-order Binaries
Definition 6.3 (First-order binary option): The derivative FB(±) on a single underlying St that at time T pays
FB(±)(ST,0,K)=f(ST)1{±ST>±K}
with payoff f(ST) is a first-order binary option with FB(+) being an up-type and FB(−) being a down-type first-order binary option.
Note:
When f(S)=S, the binaries are known as asset binaries A(±)
When f(S)=1, the binaries are known as bond binaries B(±)
We recall that under the risk-neutral measure Q we have ST=Ste(r−21σ2)τ+στZ with Z∼N(0,1) and τ=T−t. Then the condition ST≷K is equivalent to Z≷−dK where
dK=στln(KSt)+(r−21σ2)τ
Example (Price of a bond binary): The price of a bond binary is given by
B(±)(St,τ,K)=e−rτEQ[1{±ST>±K}]=e−rτEQ[1{±Z>∓dK}]=e−rτΦ(±dK)
Example (Price of an asset binary): Pricing an asset binary is slightly more involved but using the Gaussian Shift Theorem we avoid needing a measure change and the calculations become much simpler:
A(±)(St,τ,K)=e−rτEQ[ST1{±ST>±K}]=e−rτEQ[Ste(r−21σ2)τ+στZ1{±Z>∓dK}]=e−rτSte(r−21σ2)τEQ[eστZ1{±Z>∓dK}]=Ste−21σ2τe21σ2τQ(±Z±στ>∓dK)=StQ(±Z>∓dK∓στ)=StΦ(±(dK+στ))
6.2.2 Gap and Q-Options
Definition 6.4 (Gap option): Gap call options GC and gap put options GP are calls and puts with a strike price K different from the exercise price ξ, i.e. GC has the payoff function
GCξ(ST,0,K)=(ST−K)1{ST>ξ}
where K>ξ and GP has the payoff function
GPξ(ST,0,K)=(K−ST)1{ST<ξ}
where ξ<K.
Example (Price of a gap call): We have
GCξ(ST,0,K)=(ST−K)1{ST>ξ}=ST1{ST>ξ}−K1{ST>ξ}=A(+)(ST,0,ξ)−K⋅B(+)(ST,0,ξ)
hence GCξ(St,τ,K)=A(+)(St,τ,ξ)−K⋅B+(St,τ,ξ)=StΦ(dξ+στ)−Ke−rτΦ(dξ).
Definition 6.5 (First-order Q-option): The first-order Q-option is the derivative Qξ(±) with strike K different from the exercise price ξ and payoff function
Qξ(±)(ST,0,K)=(ST−K)1{±ST>±ξ}
Note: We note that gap calls and puts are special cases of first-order Q-options, i.e. Qξ(+)=GCξ and Qξ(−)=GPξ.
6.2.3 Log Contracts
Definition 6.6 (Log contract): A log contract LC with strike K>0 is an option on the log of the underlying asset price St. It has the payoff function
LC(ST,0,K)=ln(KST)
Example (Price of a log contract): We have
LC(St,τ,K)=e−rτEQ[ln(KST)]=e−rτEQ[ln(KSte(r−21σ2)τ+στZ)]=e−rτ(EQ[ln(KSt)]+EQ[(r−21σ2)τ+στZ])=e−rτ(ln(KSt)+(r−21σ2)τ)
Proposition 6.7 (Log contracts can be statically hedged): Let LCt be a log contract with strike K>0,Ft be a forward with the same strike K and CK~,t and PK~,t be call and puts with strike K~. The portfolio
πt=∫0KK~−2PK~,tdK~+∫K∞K~−2CK~,tdK~−K−1Ft
consisting of a continuum of calls and puts at different strikes K~ and one forward statically hedges LC, i.e. πt=−LC(St,τ,K).
Proof: We compute the payoff of the portfolio πt at expiry
πT=∫0KK~−2PK~,TdK~+∫K∞K~−2CK~,TdK~−K−1FT=∫0KK~2(K~−ST)+dK~+∫K∞K~2(ST−K~)+dK~−K1=∫0KK~2K~−ST1{ST<K~}dK~+∫K∞K~2ST−K~1{ST>K~}dK~−K1=[(−ln(K~ST)+K~1)1{ST<K~}]0K+[(ln(K~ST)−K~1)1{ST>K~}]K∞−K1=(−ln(KST)+K1)1{ST<K}−(ln(KST)−K1)1{ST>K}−K1=−ln(KST)+K1−K1=−LC(ST,τ,K)
6.3 Dual Expiry Options
For consistency, we define the notation τi=Ti−t and τj,i=Tj−Ti.
6.3.1 Forward Start Calls and Puts
Definition 6.8 (Forward start option): A forward start option F(C/S)(St,τ2) gives the holder at time T1 an ATM option with K=ST1 expiring at T2>T1, i.e. a forward start call option is defined through
F(C)(ST1,τ2,1)=C(ST1,τ2,1,ST1)F(C)(ST2,0)=(ST1−ST2)+
A forward start put option is defined similarly.
Example (Price of a forwards start call): Consider a forwards start call at time T1F(C)(ST1,τ2,1)=C(ST1,τ2,1,ST1)
We note that for an ATM option at time T1 with K=ST1 we have
dATM,1=στ2ln(ST1ST1)+(r+2σ2)τ2,1=σrτ2,1+2στ2,1
and dATM,2=dATM,1(τ2)−στ2,1=σrτ2,1−2στ2,1. We discount the expected value of F(C)(ST1,τ2) at time t<T1F(C)(St,τ2)=e−rτ1EQ[F(C)(ST1,τ2,1)]=e−rτ1EQ[C(BS)(ST1,τ2,1,ST1)]=e−rτ1EQ[ST1Φ(dATM,1)−ST1e−rτ2,1Φ(dATM,2)]=e−rτ1(Φ(dATM,1)−e−rτ2,1Φ(dATM,2))EQ[Ste(r−21σ2)τ1+στ1Z]=e−rτ1(Φ(dATM,1)−e−rτ2,1Φ(dATM,2))Ste(r−21σ2)τ1EQ[eστ1Z]=St(Φ(dATM,1)−e−rτ2,1Φ(dATM,2))e−21σ2τ1e21σ2τ1=St(Φ(dATM,1)−e−rτ2,1Φ(dATM,2))
6.3.2 Second-order Binaries
Definition 6.9 (Second-order binary option): A second-order binary option SB(±1,±2)(St,τ2,K1,K2) gives the holder at time T1 a first-order binary FB(±2)(St,τ2,K2) expiring at T2>T1, i.e. a second-order binary is defined through
SB(±1,±2)(ST1,τ2,1,K1,K2)=FB(±2)(ST1,τ2,1,K2)1{±1ST1>±1K1}SB(±1,±2)(ST2,0,K1,K2)=f(ST2)1{±1ST1>±1K1}1{±2ST2>±2K2}
Example (Price of a second-order down-up asset binary): For second-order assets we have the payoff function f(S)=S. We write STi=Ste(r−21σ2)τi+στiZi and
di=στiln(KiSt)+(r−21σ2)τid~i=στiln(KiSt)+(r+21σ2)τi=di+στi
Hence
[Z1Z2]∼NCor(0,R)R=[1ρρ1]ρ=−21τ2τ1
For time t<T1 we have
A(−,+)(ST1,τ2,K1,K2)=e−rτ2EQ[ST21{ST1<K1}1{ST2>K2}]=e−rτ2EQ[ST1e(r−21σ2)τ2,1+στ2Z21{ST1<K1}1{ST2>K2}]=e−rτ2EQ[Ste(r−21σ2)τ2+στ1Z1+στ2Z21{Z1<−d1}1{Z2>−d2}]=Ste(r−21σ2)τ2e−rτ2EQ[eστ1Z1+στ2Z21{Z1<−d1}1{Z2>−d2}]=Ste−21σ2τ2EQ[exp([στ1στ2]⊤Z)1{Z1<−d1}1{Z2>−d2}]=Ste−21σ2τ2exp(21c⊤Rc)EQ[1{Z1+στ1<−d1}1{Z2+στ2>−d2}]=Ste−21σ2τ2e21σ2τ2EQ[1{Z1<−(d1+στ1)}1{Z2>−(d2+στ2)}]=StEQ[1{Z1<−d1~}1{Z2<d2~}]=StΦR([−d1~d2~])
where we have made use of the multivariate Gaussian Shift Theorem.
6.3.3 Second Order Q-Options
Definition 6.10 (Second Order Q-Options): A second-order Q-option Qξ1,ξ2(±1,±2)(St,τ2,K) of exercise prices ξ1 and ξ2 and strike price K gives the holder at time T1 a first-order Q-option Qξ2(±2)(St,τ2,K2) expiring at T2>T1, i.e. a second-order Q-option is defined through
Qξ1,ξ2(±1,±2)(ST1,τ2,1,K)=Qξ2(±2)(ST1,τ2,1,K)1{±1ST1>±1ξ1}Qξ1,ξ2(±1,±2)(ST2,0,K)=±2(ST2−K)1{±1ST1>±1ξ1}1{±2ST2>±2ξ2}
Example (Price of a second-order Q-option): Since second order Q-options are portfolios of second-order assets and second-order bond binaries, their prices are given by a static replication as
Qξ1,ξ2(±1,±2)(St,τ2,K)=±2A(±1,±2)(St,τ2,ξ1,ξ2)−±2K⋅B(±1,±2)(St,τ2,ξ1,ξ2)