Intro to Probability
1. Sets and Order Structure
1.1 Sets
1.1.1 Elementary Operations
Note that it is a matter of convention whether $0 \in \N$ or not. For us, $0 \in \N$.
It can be shown that there does not exists $q \in \Q$ such that $q^2 = 2$ showing that $\sqrt{2} \notin \Q$. The same is true for $\pi$ and $e$. These numbers belong to the set of real numbers $\R$.
An element $\omega$ of $A_1 \times \cdots \times A_n$ is referred to as a vector with coordinates $\omega_i \in A_i$, $i = 1, \ldots, n$. If $A_i = A$, $i = 1, \ldots, n$, we write $\bigtimes_{i=1}^{n} A_i = A^n$. The space $\R^k$ is reffered to as the real coordinate space of dimension $k$.
Equality: $A = B$ iff $A$ and $B$ contain the same elements
Inclusion: $A \subset B$ iff $\omega \in A$ implies $\omega \in B$
Intersection: $A \cap B = \qty{\omega : \omega \in A \text{ and } \omega \in B}$
Union: $A \cup B = \qty{\omega : \omega \in A \text{ or } \omega \in B}$
Set difference: $A \setminus B = \qty{\omega : \omega \in A \text{ and } \omega \notin B}$
Let $\qty{A_i : i \in I}$ be a family of sets, then the intersection of all $A_i$ is the set
$$ \bigcap_{i\in I} A_i = \qty{\omega : \qty(\forall i \in I : \omega \in A_i)} $$and the union of all $A_i$ is the set
$$ \bigcup_{i\in I} A_i = \qty{\omega : \qty(\exists i \in I : \omega \in A_i)} $$1.1.2 Elementary Properties
Properties of inclusion:
- $A \subset A$
- $\varnothing \subset A$
- $A \subset B \qand B \subset A \iff A = B$
- $A \subset B \qand B \subset C \implies A \subset C$
Associativity:
- $(A \cup B) \cup C = A \cup (B \cup C)$
- $(A \cap B) \cap C = A \cap (B \cap C)$
Commutativity:
- $A \cup B = B \cup A$
- $A \cap B = B \cap A$
Distributive law:
- $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$
- $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$
1.1.3 The Empty Set
Further, $\varnothing \cap A = \varnothing$ and $\varnothing \cup A = A$.
More generally, let $\qty{A_i : i \in I}$ be any family of sets. $\qty{A_i : i \in I}$ is said to be disjoint if $A_i \cap A_j = \varnothing$ for all $i \neq j$.
1.1.4 Results on Set Differences
- $C \setminus (A \cap B) = (C \setminus A) \cup (C \setminus B)$
- $C \setminus (A \cup B) = (C \setminus A) \cap (C \setminus B)$
- $(B \setminus A) \cap C = (B \cap C) \setminus A$
- $(B \setminus A) \cup C = (B \cup C) \setminus (A \setminus C)$
1.1.5 On Families of Subsets
It is often the case that a particular set $\Omega$ is given and one only considers subsets $A \subset \Omega$.
- $A \cup A^{c} = \Omega$
- $A \cap A^{c} = \varnothing$
- $A \setminus B = A \cap B^{c}$
- $\varnothing^{c} = \Omega$
- $\Omega^{c} = \varnothing$
- $(A \subset B) \implies (B^{c} \subset A^{c})$
- $(A^{c})^{c} = A$
Further, we have the following properties for the complement of intersections and unions.
- $(A \cap B)^{c} = A^{c} \cup B^{c}$
- $(A \cup B)^{c} = A^{c} \cap B^{c}$
More generally, for an arbitrary family of subsets $\qty{A_i : A_i \subset \Omega, \ i \in I}$ we have:
\begin{align} \qty(\bigcap_{i \in I} A_i)^{c} = \bigcup_{i \in I} A_i^{c} \\ \qty(\bigcup_{i \in I} A_i)^{c} = \bigcap_{i \in I} A_i^{c} \end{align}1.2 Order Structure of the Real Numbers
1.2.1 Infima and Suprema
If $A$ has an upper (resp. lower) bound then we say that $A$ is bounded from above (resp. below). If $A$ is bounded from below and above, $A$ is called bounded.
- $[a,b] = \qty{x \in \R : a \leq x \leq b}$ is a closed interval
- $(a,b) = \qty{x \in \R: a < x < b}$ is an open interval
- $[a,b) = \qty{x \in \R: a \leq x < b}$ is a right-open interval
- $(a,b] = \qty{x \in \R: a < x \leq b}$ is a left-open interval
A set $I \subset \R$ is said to be an interval if it is either closed, open, right-open or left-open.
- $s$ is an upper bound of $A$
- every $s' \lt s$ is not an upper bound of $A$
- $s$ is a lower bound of $A$
- every $s' \gt s$ is not an lower bound of $A$
The following result shows that for each nonempty subset of the real line which has an upper (resp. lower) bound, the supremum (resp. infimum) exists as an element of $\R$.
1.2.2 The Rational Numbers as Approximation of the Real Numbers
In order to show that there exists a number in between any two distinct real numbers, the rational numbers $\Q$ are helpful.
1.2.3 Infima and Suprema of Unbounded Sets
- $\sup A = \infty$ if $A$ has no upper bound
- $\inf A = -\infty$ if $A$ has no lower bound
- $[a, \infty) = \qty{x \in \R : a \leq x \lt \infty}$
- $(a, \infty) = \qty{x \in \R : a \lt x \lt \infty}$
- $(\infty, b] = \qty{x \in \R : \infty \lt x \leq b}$
- $(\infty, b) = \qty{x \in \R : \infty \lt x \lt b}$
1.2.4 On Properties of Infima and Suprema
- bounded from below, for any $\delta \gt 0$ we have $\exists x \in A : x \lt \inf A + \delta$
- bounded from above, for any $\delta \gt 0$ we have $\exists x \in A : x \lt \sup A - \delta$
1.2.5 On the Completion of the Real Numbers
$\R$ is not bounded and hence $\inf \R = - \infty$ and $\sup \R = \infty$.
It is important to note that by definition, $-\infty, \infty \not\in \R$, i.e. these objects are not numbers.
- $x + \infty = \infty + x = \infty$
- $x - \infty = -\infty + x = -\infty$
- $x \cdot \infty = \infty \cdot x = \infty$ for $x > 0$
- $x \cdot (-\infty) = (-\infty) \cdot x = - \infty$ for $x > 0$
- $-(-\infty) = \infty$
- $0 \cdot \infty = \infty \cdot 0 = 0$
- $\infty \cdot \infty = \infty$
For future reference, we also write $\overline{\R}_{+} = [0, \infty) \cup \qty{\infty}$.