5. Measures

5.1 The Notion of a Measure

Definition 5.1 (Measure): Let $(\Omega, \sigmaF)$ be a measurable space. A function $\mu : \sigmaF \to \overline{\R}_{+}$ is said to be a measure on $\sigmaF$ if the following two items are satisfied:
  1. $\mu(\varnothing) = 0$
  2. Given any disjoint family $\qty{A_i : i \in \N} \subset \sigmaF,$ we have that $ \mu\qty(\bigcup_{i\in \N} A_i) = \sum_{i \in \N} \mu(A_i).$

5.2 Point Measures

Example (Point measure): Let $(\Omega, \sigmaF)$ be a measurable space and $x \in \Omega$ be a given point of $\Omega.$ Define the function $$ \delta_x(A) = \begin{cases} 1 & \text{if } x \in A \\ 0 & \text{if } x \not \in A \end{cases} $$ Then, $\delta_x : \sigmaF \mapsto \qty{0,1}$ is a measure on $\sigmaF.$
  1. From the definition of $\delta_x$ we immediately see that $\delta_x (\varnothing) = 0.$
  2. Let $\qty{A_i : i \in \N} \subset \sigmaF$ be disjoint and set $A = \bigcup_{i \in \N} A_i.$ If $x \not \in A,$ i.e. $x \in \bigcap_{i \in \N} A_i^c,$ there does not exist $i$ s.t. $x \in A_i,$ hence $\delta_x(A) = 0 = \sum_{i \in \N} \delta_x(A_i).$ Otherwise, if $x \in A,$ since $\qty{A_i : i \in \N}$ is disjoint, there exists a unique $j \in \N$ s.t. $x \in A_j.$ Hence also in this case $\delta_x(A) = 1 = \delta_x(A_j) = \sum_{i \in \N} \delta_x(A_i).$

In general, we state the following result.

Proposition 5.2 (Point measures): Let $(\Omega, \sigmaF)$ be a measurable space, $I$ be a countable set and $E = \qty{x_i : i \in I} \subset \Omega$ be a collection of points in $\Omega.$ Assume that $\alpha_i,$ $i \in I,$ are s.t. $\alpha_i \in [0, \infty)$ for any $i \in I.$ Define $\mu: \sigmaF \to \overline{\R}_{+}$ as $$ \mu(A) = \sum_{i \in I} \alpha_i \delta_{x_i}(A) = \sum_{x \in E} \alpha_x \delta_x(A) $$ where for any $i \in I$ $$ \delta_{x_i}(A) = \begin{cases} 1 & \text{if } x_i \in A \\ 0 & \text{if } x_i \not \in A \end{cases} $$ Then, $\mu$ is a measure on $\sigmaF.$
Note: Consider the setting of the latter proposition. Clearly, if $I$ is finite, $\mu(A) < \infty$ for any $A \in \sigmaF.$ If $I$ is countably infinite, we that $\# I = \# \N$ and hence, for any $A \in \sigmaF,$ $\mu(A) = \sum_{n \in \N} \alpha_n \delta_{x_n}(A).$ Therefore, since $\alpha_i \delta_{x_i}(A) \leq \alpha_i$ and $\alpha_i \geq 0,$ it follows from TODO: ref to series that $\mu(A) < \infty$ for any $A \in \sigmaF$ if $\sum_{i \in I} \alpha_i < \infty.$

5.3 Counting Measures

Example (Counting measure): We consider the measurable space $(\Omega, \powerset(\Omega))$ where $\Omega$ is a finite set. Define $\mu: \powerset(\Omega) \to \N \cup \qty{0}$ as $\mu(A) = \# A.$ Then, $\mu$ is a measure on $\sigmaF.$
  1. We have $\mu(\varnothing) = \# \varnothing = 0.$
  2. Let $\qty{A_i : i \in \N} \subset \powerset(\Omega)$ be disjoint. Naturally, since $\qty{A_i : i \in \N}$ is a disjoint family of sets, the cardinality of its union is the sum of the individual set cardinalities.
Proposition 5.3 (Counting measures): Consider the measurable space $(\Omega, \powerset(\Omega))$ where $\Omega$ is a countable but not necessarily finite set. Define $$ \mu(A) = \begin{cases}\# A & \text{if } A \in \powerset(\Omega) \text{ s.t. } A \text{ is finite} \\ \infty & \text{otherwise} \end{cases} $$ Then, $\mu$ is a measure on $\powerset(\Omega).$

5.4 Properties of a Measure

Proposition 5.4 (Properties of a measure): Let $(\Omega, \sigmaF)$ be a measurable space and $\mu$ be a measure on $\sigmaF.$ Then, we have the following properties:
  1. Given $n \in \N$ and $\qty{A_i : 1 \leq i \leq n} \subset \sigmaF$ disjoint, it follows that $$ \mu\qty(\bigcup_{i=1}^n A_i) = \sum_{i=1}^n \mu(A_i) $$
  2. If $A, B \in \sigmaF$ s.t. $A \subset B,$ it follows that $\mu(A) \leq \mu(B).$
  3. If $A, B \in \sigmaF$ s.t. $A \subset B$ and $\mu(A) < \infty,$ it follows that $\mu(B \setminus A) = \mu(B) - \mu(A).$
  4. Given $A, B \in \sigmaF,$ $\mu(A) + \mu(B) = \mu(A \cup B) + \mu(A \cap B).$
  5. If $\qty{A_i : i \in \N} \subset \sigmaF$ is s.t. $A_i \subset A_{i+1},$ then $$ \mu\qty(\bigcup_{i=1}^n A_i) = \mu(A_n) \uparrow \mu\qty(\bigcup_{i \in \N} A_i) $$
  6. If $\qty{A_i : i \in \N} \subset \sigmaF$ is s.t. $\mu(A_1) < \infty$ and $A_{i+1} \subset A_i,$ then $$ \mu\qty(\bigcap_{i=1}^n A_i) = \mu(A_n) \downarrow \mu\qty(\bigcap_{i \in \N} A_i) $$
  7. If $\qty{A_i : n \in \N} \subset \sigmaF,$ then $$ \mu\qty(\bigcup_{i\in \N} A_i) \leq \sum_{i \in \N} \mu(A_i) $$